ループ状配線 ➡ノイズのアンテナは考えすぎ

回路基板のA/W設計において、注意すべき配線設計として“ループ状配線の回避“が挙げられています。このループという言葉の響きだけで中学生の理科で学んだコイル(ループ)から出てくる磁力線をイメージして、ループアンテナができて電波(ノイズ)が空間に放出されることを考える方もいるでしょう。

しかし、上記のコイルやループは本当に電波を受信・送信するアンテナになるでしょうか?

実際に市販されているAM帯のラジオ(526.5kHz~1620kHz)のアンテナはループ(コイル)形状を使ったアンテナです。ただこのループアンテナ、AM帯の波長に比べてかなりコンパクトだと思ったことはないでしょうか?FM帯(47MHz~108MHz)用のループ形状のアンテナもあったりしますが、それに比べても小さい形状になっています。

実は、AM帯のループ形状のアンテナは基本的に受信しかできないアンテナなのです。少しアンテナの知識をお持ちの方なら、アンテナならば受信・送信の双方ができるもの(同一アンテナの相反性)と理解されていると思います。“8. ノイズも電磁波。検出するのはアンテナ?プローブ?”でも説明しましたが、AM帯のループ形状のアンテナは空間の高周波磁界を検出するプローブであって機能としてはコイル(空芯のインダクタ)なのです。AMラジオではこのコイルで受けた高周波磁界で高周波電流を生じさせて、それにつながる同調回路によって目的となる周波数(チャンネル)を選択します。

このAM帯のループ形状のアンテナに無理やり送信周波数を入れようとしても、ループ形状のアンテナからは磁界成分しか形成できないため、“11. ノイズという電磁波。では電磁波とは?(1)”の中でも述べていますが、電波伝搬として必要なTEMモード(電波伝搬方向に対して横側に電界と磁界を形成)を構成することができず、ループ形状のアンテナから電波を放射することはできません。

因みに、テレビ放送のUHF帯(470MHz~770MHz)で利用されているループ八木アンテナのループは磁界の検出ではなく電界を検出するために機能しており、コイルを巻いたループアンテナとは異なる動作原理のアンテナとなっています。(このループはその開口面を飛来電波の磁界成分側に向けて使用することはありません。)

以上のことから、回路基板の配線設計で配線形状が何となくループ形状になっているからと言ってその形状がループアンテナになることはありません。特にベタのGND層が形成された多層基板で配線した形状がループ形状であってもその配線パターンから電波(ノイズ)が放出されることはありません。但し、配線長が波長短縮の影響を加味してノイズ周波数の半端長レベルになるとループ形状等に関係なくノイズ放射のリスクは高まります。このノイズ放射のリスク回避の方法に関して当社の”SD適用(実践編)“の中で解説しております。

A/W設計の注意事項として“ループ配線を避ける”というものは所謂イメージです。そんなことよりもEMC設計実践のためにもっと注意を払わなければならないA/W設計事項があります。当社の“WD”ではEMC設計上必要とするA/W設計事項とそれを基板設計に反映させるための方法をご紹介しています。

是非、当社のPDを含めて、SD、WDをご検討ください。

“GNDが揺れている”、って何ッ?

機器のEMI(不要輻射)の対策の現場で、観測されるノイズのレベルが規制値以下になかなか下がらず、どう対策すべきか苦闘しているときに現場の担当者がよく口にするフレーズで、“機器のGND(機器の金属フレームを指す場合も)が揺れているのでは?“があります。

何気なく口にするこのフレーズ。では実際にGND電極・構造物にどんなことが起きているのか考えたことがあるでしょうか?

思いつきそうなことを下記に列挙してみました。

①GND電極の至る所で異なる電圧が発生している。(水面が波立ったイメージ?)

②GND電位の構造物の特定箇所(端部とか中央部)の電圧が±の電位で変動(振動)している。

③ノイズがGND電位の構造物にノッテ(?)いる。(憑依するイメージ?)

④GND電位の構造物がアンテナとなってノイズを放射している。

・・・・

などGND電極におけるノイズに関係した電圧について思いを巡らし、その電圧が電波(放射ノイズ)になると考えられているようです。そもそもその考え方の根底にあるのは、GND(いわゆるよいGND)の電位は常に0Vであって、それが構造物であっても至る所0Vであるという考え方があるためではないかと思います。

市販のEMCのハウツー本等では信号・電源のGND、フレームGND、システムGND等を定義して、より概念が高位(?)のシステムGNDの電位は0Vであるので、信号・電源のGND、フレームGNDはシステムGNDに対して電位差を持たないようにGND電極の電位を設計すれば放射ノイズを低減できると解説しています。(GND電位絶対説?)

理想的にはそうなのかもしれませんが、実際の機器の設計においては、信号・電源のGNDは回路基板内に形成することになります。フレーム(金属)についてはフレームに回路基板を装着・固定するために回路基板のGND電極と電気的に接続(ESD耐性や電気安全規格の関係)させるため、GND電位にします。しかしながら、システムGNDは機器の内部には存在しません。仮にEMIを測定する電波暗室の床面がそれに当たるとしても、その電波暗室の中でしか成り立たないものになります。

ではGND電極は0Vとなる電位をもつものなのでしょうか?

上記の①、②に関しては当方の技術解説<9. ノイズ電流の流れ方。その前に前提のモデルを考えて。>でも説明していますが、DC・ACに関わらず電気・電力は正負ニ極により伝送されます。そのニ極の間において正負一対の電荷が伝導していきます。電荷があるということは電位がある(0Vではない)ことを意味します。信号・電源ライン(活線)の電位は同一箇所・同一時間のGND電極の電位に対するもの(電位差)で、信号源(電源)の電圧レベルが維持されるように、GND電極の電位はその活線側に合わせて変動しています。よって0Vをキープするものではないのです。GND電位を0Vとするのはあくまで“仮定で”とか“相対的に”といった前提から設定したものなのです。

③については、上記の説明の如く、GND電極だけの単一極のみで電気・電力が流れ込むことはなく、設計者が積極的にGND電極へノイズが結合するような構造を作らない限りフレームのGND電極にノイズが“ノル”ことはないと考えられます。ただまあ、相当に運悪く電気的結合構造が偶然できてしまうという状況は全くないとは言えないかもしれませんが。

④に関しては、EMIの主要因として考えるのは難しく、フレームのGNDや回路基板のGND、更には回路基板間を電気的に接続するハーネスがある場合は、それらがEMIに対して複雑な影響を与えます。こういったEMI対策検討として、放射されるノイズの偏波特性(水平&垂直)をよく見てみることは意味があります。偏波はノイズの放射器となってしまった構造物・形態に関するヒントを与えてくれる場合があるからです。フレームがアンテナになるような場合は回路基板やハーネスと関係(電気的・構造的:“EMC設計 MBDでDX! 技術&学術”で解説)があり、そちらを先ずよく観てみるべきでしょう。仮にフレームがアンテナになっていたとして、製品の外観を形作るフレームを試作が進んでいる段階でその構造・構成を変えることは製品設計~出荷プロセスの中では極めてリスキーです。実施できないEMI対策でしょう。

いづれにしても、“GNDが揺れている”と思ったところでEMIの課題が解決する訳ではありません。課題解決のための適切な知識を持って対策することが重要です。

当方が解説しております、PD、SD、WDにおいてはフレームGND、システムGND等の考え方は必要ありません。あえて否定するものではありませんが、“特に考える必要はない”といったところでしょう。実機によるEMI測定・対策する前の段階でEMIリスクを低減できます。是非ご検討ください。