ESD対策、スキャナツールの解析は有効?

IEC61000-4-2におけるESD試験対策のツールとして、ESDガンによる電流パルス印加時の回路基板上の電流分布等を観測するツールが紹介されています。測定法の概要は下記の通り。

①回路基板の特定の部位にESDガンで電流パルスを印加して、その際の回路基板上の各位置の近傍上空から電流をプロービングする方法で1回のパルス印加で1カ所の測定を繰り返して、電流分布図を作成。

②回路基板上の各位置の近傍上空にプローブを置き、ESDガンが与えると想定した電磁界パルスをプローブから回路基板上へ放射し、その時の回路動作の不具合を観測する方法で1回の印加で1カ所の不具合状況を測定することを繰り返してESD耐性の分布図を作成。

何れの方法も回路を動作させた状態でESD試験の状況を観測できるので、電磁界Simを使った方法よりも実際に近い状況を観測でき、ESD試験で不具合が生じた際の解析ツールとして期待できると思われます。

ただ、気になる点としてそれぞれの測定に際してESD試験時に発生した機器の不具合を再現できているのか、ということです。再現できているのであれば、解析の意味があり、それによる施策は実際のESD試験の不具合対策となるでしょう。しかし、再現できない場合や異なる不具合発生となっている場合は観測自体が無駄になる可能性があります。

更に、上記の測定システムを扱うベンダーとしては、測定結果からとるべき対策方法について具体的なアドバイスがあるわけでは無いので(様々なシチュエーションがあるので仕方がないかもしれない)ユーザーそれぞれが判断して施策することになります。

しかしながら、私の今までのESD対策の経験の中では、上記してきた方法では解析できない(と思われる)原因があると考えています。それは、ESDガンの印加により発生する2次的な火花放電の発生です。そのメカニズムについては公開技術資料に掲載したIEC61000-4-2試験対策(Part-I)”で紹介しています。またその対策方法については当社の” 6.2.IEC61000-4-2試験対策” のセミナーの中で解説いたします。

一般的にESD試験と聞くと、回路基板上に実装したデバイスの端子部に規格よりも大きな電圧が襲い掛かるというイメージを持たれるでしょう。実際にそういう現象が多いのかもしれません。しかし、前述した2次的な火花放電の発生を考慮すると、回路基板上に実装したデバイスの端子部に電圧が掛からなくなるという現象も生じる可能性があります。こういったことも当社の” 6.2.IEC61000-4-2試験対策” のセミナーの中で解説いたします。

関連ページ・・・こちらもご覧ください。

”ESD対策の新たなる進展はあるのか?”

”ESD及び静電気による機器・装置の不具合解析に当社のESD2

ESDスキャナで観測。でもやっぱり対策はいつものGND強化?

”4. ESD及び静電気による機器・装置の不具合解析に当社のESD2

“ESD試験(IEC61000-4-2)対策に関する技術資料”

ESDシミュレーションに新たなソルバー登場!

サージ関連試験での不具合対策は試験パルス印加による2次放電発生も勘案して

機器・装置/ロボットにトラブル発生!不具合解析に行き詰まったら...

空気の乾燥はESD(静電気)対策の大敵?

EMC設計を回路基板のA/W設計に反映させるWD

EMC設計において回路基板(配線基板・プリント基板)のA/W(アートワーク)設計は極めて重要な要素となります。しかし、大手のセットメーカーではこのA/W設計を外注(外の会社)に依頼しているケースが殆どです。このプロセスで依頼する側がとれるEMC設計のA/W設計への反映の方策としては、外部に依頼する際に作成する設計指示書を外注先に出すことと、納入したA/WのCADデータに対してEMCチェッカーツールを適用する方法です。

EMCチェッカーを使った際の課題については” 5. 回路基板におけるEMC設計の実践と検図。当社のWDを提案。”の中で紹介しています。

問題は、A/W設計は極めて重要なEMC設計の要素なのに外注先に期待されることは、決まった形状の回路基板のスペース内に指定した回路図の配線を入れ込むこと、できるだけ短納期であること、作業コストがリーゾナブルであること、が優先されてしまうことです。そのため、A/W設計は外注先のCAD作業者の腕任せになり、CAD作業者のEMCに関する認識度の差により、出来上がった回路基板のEMC性能にも差が出てきます。

A/W設計を依頼する側はEMC設計に関して設計指示書等に記載する場合もありますが、これも外注に依頼する担当者のEMCに関する認識度の差により、設計指示書の記載内容に差(前任者のコピペレベルも)が出るでしょう。

当社のWDの考え方を、公開技術資料”WD Part-I”の中に記載しています。A/W設計を依頼する側が実施したいEMC設計(WDのデザインルール)をCAD作業者に実施してもらうプロセスを紹介しています。

EMC設計の趣旨を回路基板に反映させるために、A/W設計を依頼する側が明確なEMC設計のデザインルールの適用事項と適用する場所をCAD作業者に明示して、その実施状況をA/W設計を依頼した側が確認することが最も簡単で効果的にEMC設計を回路基板のA/W設計に反映できる方法と考えております。これはA/W設計を依頼されたCAD作業者にとっても依頼側のデザイン方針を確認できるので作業に着手し易くなるものと思われます。

そこでWDで示されるデザインルールは、ということになりますが“3.WD(Wiring Board Design for EMI)提案”のセミナーの中で紹介いたします。例として、EMCチェッカーではEMI対策として禁止されている“GND跨ぎ”について、WDのデザインルールでは“GND跨ぎ”があってもEMIを悪化させないデザイン方法を紹介しています。

チコちゃんが説明、コンセントの2つの穴は電気の入口と出口~ィ!

NHKの人気番組、チコちゃんに叱られる、を見ていたら、”なんでコンセントに2つの穴があるの?”という一般人なら誰でも疑問に持ちそうな問題に、”電気の入口と出口~!”と分かりやすい名回答。感服です。

自分のようなエレキの人なら、すぐに“それはキルヒホッフの第一法則で電気回路の電流は、・・・”等と専門的な言葉を使って、一般人にはとっつきにくい方向に行きがちかと。

ただまあ、電気に関わる現象の説明にある法則性やそれに基づくモデルを使って説明することはよくあることなのですが、現象によってはそのモデルではどうしても説明できない場合があったりします。

例えば、コンセントの2つの穴が電気の入口と出口なら、入口と出口に繋がる電線は発電所に接続してそこから各家庭の電気製品に繋がることになるのですが、電気は発電所から出て行ってまた発電所に戻ってくることになるので、電気は発電所から各電気製品へ往復の時間をかけて伝わるということになり、・・・”うーん、ちょっとヘン”ということになります。交流で考えたら尚更です。

また、50Hz等の商用の交流から、より高い周波数帯(高周波)へ考え方を広げて、高周波源と複数の回路素子を接続した回路網を考えるとき、チコちゃんの考え方でもいいですが、まあキルヒホッフの法則に従って計算します。でもこの考え方から放射ノイズが出てくることは説明できません。でも実際の電子機器では放射ノイズが観測されます。これを説明するためには電磁場(ベクトル場)を用いたマックスウェルの方程式のモデルを使うことが必要となります。(残念ながら、電磁気学を学んだ人でないと理解は難しいのですが。)電子機器からのノイズ(不要輻射・EMI)が如何に生じるかについては、当社のセミナー” EMC設計 MBDでDX! 技術&学術”で解説していますので是非受講して頂きたいです。 当セミナーを受講して頂けますと、当社が推奨しております”PD適用””SD適用”におけるEMI対策の原理・効果をより深く理解することができます。

信号ラインのEMC設計は”SD適用”で決まり!

SD適用については当ホームページの「技術解説 3. 信号ラインのダンピング抵抗、当社のSD適用のSimモデルで抵抗値を設定。」において紹介しておりますが、具体的にどのような方法で行うか、を説明した資料を「公開技術資料」のページに”SD適用に関する技術資料(基礎編)”として掲載いたしました。

EMC設計を考慮した信号ラインの設計に関して関心をお持ちの方々には是非参考にして頂きたいです。

当社の「SD適用」は一般的に知られているSI評価における波形解析だけではなく、得られた波形に対する周波数成分の解析を加えることにより、伝送波形における放射ノイズのリスクを評価することができます。

”SD適用”を行うことで、

①ICの信号ラインによるEMI(不要輻射)のリスクを低減

②IC間で送受される波形品質の確認→ICの安定動作の確認

の①、②を同時に事前に行うことができます。

これは将に、回路図検討段階でできる(やるべき)回路設計でありEMC設計です。

EMC設計の対象となる信号ラインはCLKラインだけでよい、ということも理解することができます。

また、EMC対策部品としてよく提案されているEMIフィルターに関しても信号ラインにはあまり好ましくないことも理解することができます。

今回掲載した”SD適用”の資料は”基礎編”となりますが、”実践編”につきましては当社のセミナー中でご紹介します。特にメイン基板からサブ基板へケーブル(ハーネス)を介して信号を送受信する場合(この状態の時に信号波形は大きく歪、且つEMIのリスクも高まります。)の信号ラインの検討方法、更にその際に必要となる回路処理方法をご紹介します。

是非“SD適用”をご検討頂きたいです。